The ITOS Command Subsystem

ITOS User’s Manual
$Date: 2006/07/13 15:36:34 $

Copyright 1999-2006, United States Government as represented by the
Administrator of the National Aeronautics and Space Administration.
No copyright is claimed in the United States under Title 17,

U.S. Code.

This software and documentation are controlled exports and may only be
released to U.S. Citizens and appropriate Permanent Residents in the
United States. If you have any questions with respect to this
constraint contact the GSFC center export administrator,
<Thomas.R.Weisz@nasa.gov>.

This product contains software from the Integrated Test and Operations
System (ITOS), a satellite ground data system developed at the Goddard
Space Flight Center in Greenbelt MD. See <http://itos.gsfc.nasa.gov/>
or e-mail <itos@itos.gsfc.nasa.gov> for additional information.

You may use this software for any purpose provided you agree to the

following terms and conditions:

1. Redistributions of source code must retain the above copyright
notice and this list of conditions.

2. Redistributions in binary form must reproduce the above copyright
notice and this list of conditions in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgement:

This product contains software from the Integrated Test and Operations

System (ITOS), a satellite ground data system developed at the Goddard

Space Flight Center in Greenbelt MD.

This software is provided ‘‘as is’’ without any warranty of any kind,
either express, implied, or statutory, including, but not limited to,
any warranty that the software will conform to specification, any
implied warranties of merchantability, fitness for a particular
purpose, and freedom from infringement and any warranty that the
documentation will conform to their program or will be error free.

In no event shall NASA be liable for any damages, including, but not
limited to, direct, indirect, special or consequential damages,
arising out of, resulting from, or in any way connected with this
software, whether or not based upon warranty, contract, tort, or
otherwise, whether or not injury was sustained by persons or property
or otherwise, and whether or not loss was sustained from or arose out
of the results of, or use of, their software or services provided
hereunder.

The ITOS Command Subsystem

The ITOS Command Subsystem

$Date: 2006/07/13 15:36:34 $

Chapter 1: Command Overview 2

1 Command Overview

The command processing system supports the Consultative Committee for Space Data
Systems (CCSDS) Command Operation Procedure (COP), COP-1 Enhanced Service. COP-
1 fully specifies the closed-loop protocol executed between the sending (ground) and receiv-
ing (spacecraft) entities. The COP consists of a pair of synchronized procedures: a Frame
Operation Procedure (FOP) that executes within the sending entity; and a Frame Accep-
tance and Reporting Mechanism (FARM) that executes withing the receiving entity. The
FOP transmits telecommand transfer frames to the FARM. The FARM returns telemetered
Command Link Control Words (CLCW’s) within the telemetry transfer frame trailers to
the FOP which provides return status about the acceptance of the frames by the spacecraft.

COP-1 operates on the principle of sequential frame acceptance and retransmission,
with frame sequence numbering. The FOP initiates the transmission of TC Frames whose
sequence numbers are arranged in upcounting sequential order. The FARM only accepts
frames if their sequence numbers match the expected upcounting order. As soon as a
sequence error is encountered, the FARM rejects all subsequent frames whose sequence
numbers do not match the expected order. The FOP monitors the CLCW to determine if
frames are being rejected, and if so, backs up and retransmits the series of frames beginning
with the frame whose sequence number matches the number which the FARM is expecting.
See the CCSDS 202.0-B-1 Blue Book for complete specification of the COP-1 protocol.

$Date: 2006/07/13 15:36:34 $

Chapter 2: Enabling Commands 3

2 Enabling Commands

The command subsystem must be activated before the spacecraft can be commanded.
This is done with the ENABLE CMD directive. Only one user, which should be the Test
Conductor on the Test Conductor Workstation, may have commands enabled at any given
time. In the unlikely event that the Test Conductor Workstation experiences a hardware
failure, commands may be enabled on another workstation (referred to as a Subsystem
GSE) which could takeover as the new Test Conductor Workstation.

$Date: 2006/07/13 15:36:34 $

Chapter 3: Types of Commands 4

3 Types of Commands

3.1 Command Mode Configuration Commands

The MODE directive (see (undefined) [MODE]|, page (undefined)) allows the user to
configure the various commanding modes that control the manner in which spacecraft com-
mands are processed and transmitted by ITOS.

There are two commanding modes, one-step and two-step, which affect the manner in
which spacecraft commands are transmitted to the spacecraft. While in one-step com-
manding mode, spacecraft commands entered by the user are formatted into telecommand
transfer frames and immediately transmitted to the spacecraft. In two-step mode, com-
mands are formatted and stored in the command buffer where they remain until a request
is received by the user to either transmit the commands or clear them from the buffer. For
details on the command buffer and instructions for viewing its contents, see See Chapter 7
[Command Buffer|, page 12. After a command is successfully transmitted to the spacecraft,
it is placed in the Sent-Queue pending acknowledgement by the spacecraft. The Sent-Queue
page display provides a history of the most recently transmitted commands as well as infor-
mation about currently pending commands. For details on the Sent-Queue, see Chapter 8
[Sent Queue], page 13.

3.2 Spacecraft Commands

Spacecraft commands are used to control individual components of the spacecraft. They
may be issued by the user in either mnemonic format using the CMD directive (see (un-
defined) [CMD], page (undefined)), or raw format using the RAW (see (undefined) [RAW],
page (undefined)) and RAWTF (see (undefined) [RAWTF], page (undefined)) directives.
Commands entered in mnemonic form are formatted into Telecommand Packets which are
encapsulated in Telecommand Transfer Frames as defined in the Database described in the
Telemetry and Command Handbook.

The Telecommand Transfer Frame format is:

From CCSDS 202.0-B-2: _Telecommand_Part_2_-_Data_Routing_Service_,
November 1992, pages 3-3 and 4-3:

$Date: 2006/07/13 15:36:34 $

Chapter 3: Types of Commands 5

|<========-- FRAME HEADER (5 octets)----------- >
| 2 octets | 2 octets | 1 octet |
i Fomm - Fomm - o +
| vo | bf | ccf | u | id | wvec | f1 | fsn | frame | frame |
| I | I | I | | | data | error |
l2 |1t |1t 2110 6 | 10 | 8 | field | control |
e e dm————— e +
| 1019 octets max |
/ I
............ I
/ I
| <-SEGMENT HEADER->|
| 1 octet |
e o |
| sf | mapid I segment |
I | I data I
2 | 6 | field I
o o |
[1018 octets max|
vn - VersionNumber -- constant O (0b00)
bf - BypassFlag -- normally O, 1 indicates a bypass command
ccf - ControlCommandFlag -- normally O, 1 indicates a control command
u - reserved spares -- constant 0
id - SpacecraftId
vc - VirtualChannel
f1 - FramelLength -- ‘‘C’’, where ‘‘C = (Total Number of Octets) - 1°’
fsn - FrameSequenceNumber
sf - sequence flags -- normally ‘‘11’’ (no segmentation)

mapid - Multiplexer Access Point (MAP) Identifier
The Telecommand Packet format is:

From CCSDS 203.0-B-1: _Telecommand_Part_3_-_Data_Management_Service_,
January 1987, page 5-2:

| <====mmmmm PRIMARY HEADER (6 octets)---------- >|

| | PACKET | I

| PACKET | SEQUENCE | PACKET |

I IDENTIFICATION | CONTROL | LENGTH |

A o o e o
——+

| vo | ty | shf | appid | sf | sq | pl | secondary | app |
I I I I I I I | header I I
3 |1 | 1 | 11 |2 | 14 | 16 | (optional) | data I
e e e e e
-t

| 2 octets | 2 octets | 2 octets | (variable) | (variable) |
vn -- VersionNumber (always ‘‘000°?)

ty -- Type (always ‘‘1’’ for a telecommand packet)

shf -- SecondaryHeaderFlag

appid -- AppID

$Date: 2006/07/13 15:36:34 $

Chapter 3: Types of Commands 6

st -- SequenceFlags
sq -- SequenceCount
pl -- PacketLength ‘‘C’’ where ‘‘C = (number of octets) - 1°°

All commands received by the spacecraft undergo a basic set of "Frame Validation
Checks". If the Bypass Flag in the TC Transfer Frame Header is not set, each Frame
is additionally tested against the Frame Acceptance Checks. Frames that are transmitted
in the normal "Acceptance" mode undergo both the Validation and Acceptance Checks are
called Type-A Frames. Frames that have their Bypass Flag set cause the normal Frame Ac-
ceptance Checks of the FARM to by bypassed. These Frames are called Type-B or Bypass
Frames.

The FOP can be configured to send commands as Type-B Frames, by using the BYPASS
ON directive (see (undefined) [BYPASS], page (undefined)) to enter bypass commanding
mode. All commands entered in this mode will have their Bypass Flag set to 1. The
Bypass Mode can be used whenever there is no data being telemetered by the spacecraft,
thus making command verification impossible.

3.2.1 Command Mnemonics

Commands that are defined in the database may be entered in mnemonic form using
the CMD directive (see (undefined) [CMD], page (undefined)). Some commands may have
associated submnemonics which further define the action of the commands. Submnemon-
ics may be fixed, variable, or invisible. Fixed submnemonics, as the name implies, may
only take on fixed values which are predetermined and defined in the database (eg. ON,
OFF). Variable submnemonics may take on any value within a specified range of values (eg.
ADDRESS=h’7FF’). All Fixed and Variable submnemonics must be entered in the command
line. Invisible submnemonics are fixed submnemonics that can only take on one predefined
value. Since the value of an invisible submnemonic can never change, it does not have
to be specified on the command line, but will automatically be included in the formatted
command which is transmitted to the spacecraft. Some examples of a command which has
both fixed and variable submnemonics are:

/CMD MUDOWNSETUP MUESOURCE, BIPHASE, TLM4K, SELECTVOLT=5
/CMD MUDOWNSETUP IDPUSOURCE, NRZL, TLM1500K, SELECTVOLT=10

3.2.2 Raw Commands

The user may enter commands in raw hexidecimal format at either the CCSDS Source
Packet or Teleocmmand Transfer Frame level. Raw commands may be used to send com-
mands that are not defined in the database or to allow negative command testing of the
spacecraft FARM by setting fields in the TC Transfer Frame header. The RAW directive
(see (undefined) [RAW], page (undefined)) is used to send raw Telecommand Source Pack-
ets, and the RAWTF directive see (undefined) [RAWTF], page (undefined) is used to send
raw telecommand Transfer Frames. For raw commands entered at the Source Packet level,
the command subsystem will automatically format the Packet into a Transfer Frame before
transmitting the command to the spacecraft.

$Date: 2006/07/13 15:36:34 $

Chapter 3: Types of Commands 7

3.2.3 Hazardous Command Screening

Depending on the current state of the spacecraft, the functions that some commands
perform may be considered hazardous. Commands that may be hazardous are defined as
such in the database. The criticality of all spacecraft commands, except when entered in
raw format, is screened. If the database indicates that a particular command is hazardous,
the user will be notified and prompted to allow or cancel the command. When commanding
in two-step mode, if any command in the block of commands entered are hazardous, upon
issuing the SEND directive (see (undefined) [SEND], page (undefined)), the user will be
prompted to allow or cancel the transmission of the entire block of commands. This is not
currently implemented and no prompt will occur.

3.3 Control Commands

Control commands are used to control and configure the FOP and FARM. FOP control
commands are executed by the FOP, and FARM control commands are transmitted to the
spacecraft for execution by the FARM.

3.3.1 FARM Control Commands

FARM control commands contain data which sets the parameters of the FARM to the
proper configuration to accept telecommand data. All FARM control commands have their
Bypass Flag and Control Command Flag set to the value 1. The FARM control commands
supported by ITOS at this time are UNLOCK, SET NEXT EXPECTED FRAME SE-
QUENCE NUMBER and SET NEXT EXPECTED FRAME SEQUENCE NUMBER TO
ZERO. These control commands are sent via the UNLOCK((see (undefined) [UNLOCK],
page (undefined)) SETVR(see (undefined) [SETVR], page (undefined)) and RESET (see
(undefined) [RESET], page (undefined)) directives, respectively.

3.3.2 FOP Control Commands

FOP control commands are used to configure the FOP for the desired mode of operation.
The FOP can be configured to turn off command verification using the BLIND (see (unde-
fined) [BLIND], page (undefined)) or the MODE (see (undefined) [MODE]|, page (undefined))
directive. The automatic retransmission of commands can be configured by the RETRLIM (see
(undefined) [RETRLIM], page (undefined)) and RETRY (see (undefined) [RETRY], page (un-
defined)) directives. The CLCW timeout parameter can be configured by the TIMEQOUT (see
(undefined) [TIMEOUT], page (undefined)) or MODE directive. And the commands in the
SENT QUEUE pending acknowledgement by the FOP can be forcibly removed using the
PURGE (see (undefined) [PURGE], page (undefined)) directive.

$Date: 2006/07/13 15:36:34 $

Chapter 4: Spacecraft Command Verification 8

4 Spacecraft Command Verification

The FOP verifies that the commands are received correctly by the spacecraft, but does
not verify that the commands are actually executed (otherwise known as end-item verifica-
tion). The user can achieve end-item verification using STOL procedures which can issue a
spacecraft command and then wait for a specified telemetry point to change to an expected
value.

Command verification is performed according to the CCSDS COP-1 protocol. Type-A
commands sent to the spacecraft must be received in strict upcounting sequential order. In
order to maintain this strict order, each spacecraft command is formatted into a transfer
frame, assigned a sequential frame sequence number, and transmitted to the spacecraft. The
spacecraft looks at the frame sequence numbers of the transfer frames and makes sure they
are received in sequential order. The spacecraft then determines the next expected frame
sequence number (NE) that is should receive and inserts this information in the Command
Link Control Word (CLCW) of a transfer frame to be telemetered to the ground. The
ground maintains a separate frame sequence number counter which is used to number the
transfer frames.

If a transfer frame is received out of sequence, the spacecraft sets a flag in the CLCW
indicating that a command retransmission beginning at the NE will be necessary. If au-
toretransmission mode is in effect, the failed commands will be retransmitted until they
are either verified or the number of retransmissions have exceeded the maximum allowable
limit.

Because the Telecommand Transfer Frame Sequence Number field in the Frame Header
is only 8 bits long, the frame sequence number will wrap-around every 256 frames. There
is a mechanism used by the FARM, called the FARM Sliding Window, which is used to
prevent a complete "wrap-around" of the transmitted frame sequence numbers. If a frame
is received with a Frame Sequence Number greater than the limit established by the FARM
Sliding Window, the FARM will set the Lockout flag in the CLCW indicating that it is
in LOCKOUT mode. Once in LOCKOUT mode, the FARM will not accept any Type-A
frames until the channel is unlocked via the UNLOCK control command (see (undefined)
[UNLOCK], page (undefined)).

If the CLCW is not updated within the maximum allowable time after transmitting a
command, a TIMEOUT condition will occur and the command will fail verification. This
CLCW timeout period is programmable (see (undefined) [TIMEOUT], page (undefined)).

The commands in the Sent-Queue pending acknowlegement whose frame sequence num-
bers are less than the spacecraft’s next expected frame sequence number are positively
verified and are dequeued from the Sent-Queue.

4.1 Automatic Command Retransmission

When a command fails verification, the FOP can be configured to automatically retrans-
mit the command up to a specified number of times until either the command is verified,
or the maximum number of retries has been exceeded. Turning on and off automatic re-
transmission of commands and setting the maximum number of allowable retries is done via

$Date: 2006/07/13 15:36:34 $

Chapter 4: Spacecraft Command Verification 9

the RETRLIM directive (see (undefined) [RETRLIM], page (undefined)). Once the maximum
number of retries have been reached, the user will be notified of command failure. At this
point, the user may manually retransmit the failed command(s) by issuing the RETRY direc-
tive (see (undefined) [RETRY], page (undefined)) , or may remove the failed command from
the SENT QUEUE using the PURGE directive (see (undefined) [PURGE], page (undefined)).

4.2 Setting Timeout Parameter

The CLCW is updated in telemetry at a predictable rate. This rate is determined by
such parameters as the round trip propagation delay, the frequency of CLCW sampling,
etc. The time between expected updates of the CLCW is configurable by the user via the
TIMEOUT directive (see (undefined) [TIMEOUT], page (undefined) .

4.3 Single-Step Verification

In single-step verification mode, each Type-A or Type-B spacecraft command must be
verified before another command may be issued. Details are TBS.

$Date: 2006/07/13 15:36:34 $

Chapter 5: Turning Off Verification 10

5 Turning Off Verification

Whenever telemetry is not available from the spacecraft, and, therefore, no CLCW
information is being received, command verification may be turned off by going into the
Blind Commanding Mode using the BLIND directive (see (undefined) [BLIND], page (unde-
fined)). In this mode, commands will automatically be purged from the SENT QUEUE.

$Date: 2006/07/13 15:36:34 $

Chapter 6: FOP States 11

6 FOP States

Depending on the occurrence of particular events, the FOP will be in one of the following
seven states:

‘ACTIVE’ Fop in nominal status. Ready to accept frames and transmit them.

‘WAIT WITH NO RETRANSMIT PENDING’
A CLCW report has indicated that the FARM has no buffer space available.
No frames will be transmitted until the condition is cleared.

‘WAIT WITH RETRANSMIT PENDING’
Same as above, but in addition, CLCW reports indicate that one or more frames
must be retransmitted.

‘FARM IN LOCKQUT’
CLCW reports indicate the FARM has detected an anomaly in the functioning
of the COP and has entered the LOCKOUT state. Type-B commands may still
be transmitted, but no Type-A frames will be transmitted until the condition
is cleared.

‘BLIND COMMANDING’
Commanding without CLCW’s.

‘INITIAL & FINAL’
State of the FOP when the hardware/software that implements the FOP is
started up. FOP is waiting for configuration data. The FOP returns to this
state following a commanding session when the channel is closed.

‘WAIT TO CLOSE’
Waiting for CLCW reporting to stop following a CLOSE command.

$Date: 2006/07/13 15:36:34 $

Chapter 7: Command Buffer 12

7 Command Buffer

The command buffer is used to store up to 64 commands entered in two-step command-
ing mode. The commands remain in the buffer until the SEND directive (see (undefined)
[SEND], page (undefined)) is issued. If any command in the command buffer is hazardous
as identified in the database, the user will be prompted to allow or cancel the transmission
of all of the commands in the buffer. Once transmitted to the spacecraft, the commands
will be placed in the SENT QUEUE pending acknowledgment by the spacecraft. Before the
SEND directive is issued, commands may be cleared from the buffer at any time using the
CLEAR directive (see (undefined) [CLEAR], page (undefined)). The command buffer may be
viewed using the PAGE CMDBUF directive (see (undefined) [PAGE], page (undefined)). To see
the raw hexidecimal representation of the commands in the buffer, the user may click on
a particular command with the mouse and a pop-up window will appear showing detailed
information about the command. An example of the command buffer page is below:

| cmdbuf |
| Comends pending:2 |
: Command Critical Seq Num :
oo ' o T

ANOOP N 1 ~

$Date: 2006/07/13 15:36:34 $

Chapter 8: Sent Queue 13

8 Sent Queue

The SENT QUEUE is used to store commands which have been transmitted to the
spacecraft and are pending acknowledgment. The SENT QUEUE is also used to provide
a history of the most recent 127 commands that have been transmitted to the spacecraft.
Commands that fail verification may be purged from the SENT QUEUE by issuing the
PURGE directive (see (undefined) [PURGE], page (undefined)).

The information contained in the SENT QUEUE for each command includes the name
of the command, its frame sequence number, the number of times it has been retransmitted,
the time it was sent, and its verification status. If a command fails verification, the status
will display FAIL, if a command passes verification, the status will display VER. Because
Type-B (bypass) commands cannot be properly verified through telemetry, their status will
always be shown as BYPASS.

The contents of the SENT QUEUE may be viewed using the PAGE SENTQ directive. To
see the raw hexadecimal representation of the commands in the buffer, the user may click on
a particular command displayed on the SENT QUEUE page with the mouse and a pop-up
window will appear showing detailed information about the command. The following is an
example of the SENT QUEUE page.

Commands pending: O Queue status: EMPTY |

SNOOP 93-236-20:09:06. FAIL

Command Seq Num Retries Time sent Status |
| = |
| CTBLDUMP 4 0 93-236-20:13:08.0 VER | |
| LOAD 3 0 93-236-20:09:43.0 VER I -1
| LOAD 2 0 93-236-20:09:41.0 VER (.
| LOAD 1 0 93-236-20:09:39.0 VER (.
| ANOOP 0 0 93-236-20:09:28.0 VER I - |
| RESET 0 0 93-236-20:09:20.0 BYPASS | v |
| 5 0 0 |-—-1
I (.
I (.

$Date: 2006/07/13 15:36:34 $

Chapter 9: Image Loads 14

9 Image Loads

ITOS provides a Ioad capability for sending to the spacecraft a file of data in a stream
of telecommands. Loads are initiated by the STOL load and loadpkt directives. (see
(undefined) [LOAD], page (undefined))

Processing initiated by the STOL load directive requires a properly-formated load file,
discussed in detail below. You can create a properly-formatted load file from an arbitrary
binary data file using the ITOS make_load_file program. The loadpkt directive operates
on a formatted load file containing already-built telecommand packets.

ITOS load files consist mainly of the data to be loaded, in ASCII hexadecimal notation.
Along with the data, though, the load file contains information on what spacecraft com-
mands must be sent to prepare for the load, to carry the load data, and to finish the load;
and additional information on command formatting.

The load directive processing splits the data contained in a load file into a series of
telecommand source packets, and writes these to a formatted load file. To turn on command
sequence counting in the source packets set the global mnemonic GBL_LOAD_SEQUENCE
to 1. The default is 0 or off. Then the formatted load file is uplinked to the spacecraft as
it would be if given to the loadpkt directive, as follows:

Commands are transmitted through the command buffer, 64 commands at a time. The
load process waits until each buffer full of commands is verified before loading and sending
the next buffer. If the command system is in two-step mode, the load pauses after filling
the command buffer with the first set of commands, waiting for the send directive. (see
(undefined) [SEND], page (undefined)) After the send is issued, the load continues as in
one-step mode and will not pause again for subsequent buffers full of commands

When all command frames for the image load have been verified by the spacecraft,
a global mnemonic, GBL_.LOADDONE, is set to the value "1". An additional global
mnemonic, GBL_LOADFILE, is also set which indicates the name of the load file just
loaded.

9.1 Load Files

Load files look like this:

Table Load
WIRE,TB145,98-133:05:40:05,001,I&T,00C8,NOSWAP
/SMTBLSELECT TABLEID=145, SRCZERD, DESTRAM
/SMTBLLOAD OFFSET=H’0°

/SMTBLCOMMIT CKENABLE, CHECKSUM=H’E0C3’

b

X385F12B5 ; Timestamp

00 04 00 02 99 C9 42 6F 11 F6 3F EE 87 OF 74 30;
E3 A8 3F D5 14 7B 47 AE 7A E1 3F 84 A9 FC D2 Fi;
62 4D 3F 60 7E FA BC 6A 93 74 3F 58 00 00 00 00;

Lol o I

$Date: 2006/07/13 15:36:34 $

Chapter 9: Image Loads 15

X 00
X 99
X 38

b

00 00 00 00 00 00 OO OO 00 OO0 OO OO0 00 99 9A;
99 99 99 3F F1 33 32 38 3F 6B 10 3F 09 33 32;
3F 6B 10 3F 09 00 OA 00 00;

In a load file, comments begin with either semi-colon (;) or hash (#) and continue to the
end of the line. Blank lines and lines containing only comments are ignored.

The first non-blank, non-comment line is the abstract record; this is copied to the for-
matted image load file but otherwise ignored. It is intended as a comment to identify the

load.

The second line is the mission information line, which consists of several
comma-seperated fields:

mission name

image ID
date
version
source

packet size

swap

This field is ignored by the ITOS LOAD directive.
This field is ignored by the ITOS LOAD directive.
Copied to the formatted image load file but otherwise ignored.
This field is ignored by the ITOS LOAD directive.
This field is ignored by the ITOS LOAD directive.

Maximum packet size. When the LOAD directive formats the raw image load
file into packets, this is the maximum number of data bytes in each packet.

Indicates whether or not the LOAD directive should swap bytes when gener-
ating the formatted image load file. Byte swapping is only performed if this
field has one of the values SWAPBYTES or UI085. (Note: UI085 is recognized but
deprecated; SWAPBYTES should be used instead). Any other value results in no
byte swapping; the value NOSWAP is preferred.
Why swap bytes?
Some spacecraft (TRACE and WIRE, for example) ingest loads as a sequence
of 16-bit little-endian words, which is fine if the load is such a sequence. For
an arbitrary sequence of bytes, however, this results in each pair of bytes being
swapped.
An example might make this clearer:
Suppose we want to load a simple eight byte table so that the byte at the load
offset plus zero is 0x00, the byte at load offset plus one is 0x11, the byte at load
offset plus two is 0x22, and so on. A load file in the ‘correct’ byte order would
contain:

X 00 11 22 33 44 55 66 77
However, this must get transmitted as

1100332255447766
in order for the spacecraft to store the data in memory correctly. (Remember,
the spacecraft reads this load as the ‘words’ 1100, 3322, 5544, and 7766. The
spacecraft is little-endian, so when it writes these words to RAM they will end
up in the proper order, 0011223344556677.)

$Date: 2006/07/13 15:36:34 $

Chapter 9: Image Loads 16

data size This is an optional field which gives the size in bytes of data items being loaded.
It may be set to ‘1’, ‘2°, or ‘4’. This option controls how the load program sets
the ADDRESS or OFFSET and NUMBYTES fields in the load command. It
serves as a divisor for those field values, which normally are set with respect to
bytes; that is, byte addresses and byte counts, respectively. Set the data size to
2, and the command fields are set with respect to 16-bit words; set it to 4, and
they are set with respect to 32-bit words. In other words, if this field is set to 2,
the ADDRESS field is calculated to be a 16-bit word address, and NUMBYTES
is the number of 16-bit words in the data field of the load command. (It really
represents numwords in that case, though its name still is NUMBYTES.)

Consider the load:

Code load
UvVOoT,OPER,2000.11.29-13:00:00,001,1&T,002e ,NOSWAP,2
/NOSELECT

/UVOTLOAD OFFSET=H’14’ ,mid=4

/NOCOMMIT

X 006d 0001 0000 3800 00e6 85d0 2abf
X 8320 0906 b122 4820 400e 4800 4009 8520
X dd40 4820 2000 4810 2002 b700 0400 0402
X 0d04 85f0 £d0O 81lef b122 8510 383b b100
for which the load command is defined as follows:
cmd |uvotload|+10x662|0]||[1]]]]|"test 1load command"
fldluvotload|mid|+|ul2][8| |||]||"memory bank ID"
fld|uvotload|offset|+|ul234||10]|1|]||"load address"
fld|uvotload|numbytes|+|ul2|[14|[||]|]|"count of load data bytes in this cmd"
fld|uvotload|datal+|ul2||16]|||||||"load data starts here"
This results in the following two load commands. Note the indicated fields,
which are the 4-byte OFFSET and 2-byte NUMBYTES fields:
VVVVVVVVVVVY
/LOAD: 004E004302C1 1E62C0000037 00000004000000140017006D00010000380000
E685D02A5F83200906B1224820400E480040098520DD4048202000481020
02B7000D0O00D0O2
/LOAD: 004E002503C1 1E62C0000019 000000040000002B0008ODOD85FOFDO0S1EFB1
228510383BB1OGC T"omonnananes

The third line is the select command. This is either a command as would be entered via
STOL or the string NOSELECT. If a command was entered, this command will be placed at
the beginning of the formatted load so that it is uplinked before the load data.

The fourth line is the load command. This is either a command as would be entered
via STOL or the string NOLOAD. If a command was entered, the load data will be uplinked
using this command. Three Ioad command fields are treated specially by the load software:

Load commands are required to have a field named DATA, of type Ul. This field serves
only to mark the beginning in the packet of the start of the load data, which continues to
the end of the packet.

A load command may have a field giving the address to which the portion of the load
contained with any given command should be loaded. If the load command has a field

$Date: 2006/07/13 15:36:34 $

Chapter 9: Image Loads 17

named either ADDRESS or OFFSET, the load program will increment that field according
to the data size element in the mission information line. If ADDRESS or OFFSET is
specified in the load command in the load file, then it gives the starting address for the
load.

A load command also may have a field named NUMBYTES, which gives the number of
bytes (or words or longwords, according to data size) contained in the load command. If
this field is defined, the load program will set it accordingly in each load command.

The fifth line is the commit command. This is either a command as would be entered
via STOL or the string NOCOMMIT. If a command was entered, this command will be placed
at the end of the formatted load so that it is uplinked after the load data.

The rest of the file is the load data, in hexadecimal notation. Load data lines optionally
begin with X, and must contain an even number of hexadecimal characters.

9.2 Formatted Image Load Files

Formatted image load files look like this:

Table Load
98-133:05:40:05
18 05 cO 00 00 09 00 O1
00 91 00 03 00 03 01 7e

18 05 cO 00 00 cf 00 02
00 00 00 00 00 c8 5f 38 b5 12 04 00 02 00 c9 99
6f 42 f6 11 ee 3f Of 87 30 74 a8 e3 d5 3f 7b 14

32 33 3f 38 10 6b 09 3f 0a 00 00 00

18 05 cO 00 00 07 00 04
00 01 e0 c3 02 8¢

They are uplinked via the LOADPKT directive. The first two non-blank and non-
comment lines are ignored. Those lines usually are the load abstract and date copied from
a load file compatible with the load directive.

$Date: 2006/07/13 15:36:34 $

Chapter 10: Image Dumps 18

10 Image Dumps

Image dump packets are captured automatically and written to a file by the Command
Subsystem whenever a spacecraft table or memory dump command is issued by the user.
The command subsystem determines if a command is a table or memory dump command
by consulting the database: If the “dump flag” in the command definition is set to ‘T’ or
‘M’, then the command’s “telemetry AppID for dump data” will contain the application ID
of the telemetry packets which will carry the requested dump.

Spacecraft commands which abort dumps should be defined with the “dump flag” is
set to ‘A’. When ITOS sends such a command, it should abort dump packet collection.
However, this currently doesn’t work using the internal simulator; instead, when aborting
test dumps, set the global mnemonic GBL_DUMPCMDSTAT variable to 0.

The command subsystem determines when it has received the complete image dump by
examining information in the data field of each dump packet it receives, as described below.
Dump collection also will time out after 60 seconds. If the information needed to determine
when the dump is complete is not included in the dump packets, the timeout will terminate
the dump.

If multiple copies of a dump are commanded and the appropriate mnemonics are defined
for the dump packet, each copy will be collected individually.

Dump data are written to a file in ASCII hex format (see Section 10.2 [Image Dump
Report Format], page 19). The filename can be specified using the STOL DUMPFILE
directive, or will default to the name of the most recent LOAD file with the extension
".DMP.Cn" (where 'n’ represents the copy number), or, if no LOAD was issued, will default
to the name of the dump command with the extension ".DMP.Cn". Existing files with the
same name will be overwritten!

When the dump is complete, the global mnemonic, GBL_DUMPDONE is set to the
value 1. The global mnemonic, GBL_DUMPFILE is set to the name of the current dump
file when the file is opened. The global mnemonic, GBL_ IMGDUMPDIR specifies the
directory where dump files are created.

10.1 Image Dump Packet Format

The database indicates which commands initiate memory or table dumps. See (unde-
fined) [cmd], page (undefined), and which appid will contain the dumped data.

Memory dump packets may contain these mnemonics, all of which must be of type
unsigned integer. If defined for the dump packets, they are used by the dump collection
software as noted. Replace the x in the mnemonic names with an M for memory dumps
and a T for table dumps.

CxDUMPCNUM
Tells to which copy of the memory dump this packet belongs. If this item is
not defined for the dump packet, ITOS assumes that all dump packets belong
to a single copy.

$Date: 2006/07/13 15:36:34 $

Chapter 10: Image Dumps 19

CxDUMPCTOT
Gives the total number of copies which are being dumped. If this item is not
defined for the dump packet, ITOS assumes one copy is being dumped.

CxDUMPENDADD
Gives the address of the last byte in the memory dump. This is used to deter-
mine when the dump is complete: the dump is complete if CxDUMPPKTADD
+ CxDUMPPKTSIZ -1 >= CxDUMPENDADD, and all three of these items
are defined for the dump packet.

CxDUMPPKTADD
Gives the spacecraft memory address of the first byte of dump data in this
packet. This item is used only to calculate when the dump is complete.

CxDUMPPKTSIZ
Gives the number of bytes of dump data in this packet. If this item is not
defined for the dump packet, the dump data is assumed to extend to the end
of the packet.

CxDUMPSTADD
Gives the spacecraft memory address of the first byte in the memory dump. If
cmdumpdata is not defined for the dump packet, then the dump data begins
18 bytes past the offset of this item in the dump packet. If neither this item
nor cmdumpdata is defined, the dump data begins 28 bytes from the start of
the packet primary header.

CxDUMPDATA
The offset of this item in the packet is the offset at which the dump data begins.
Dump data continues through the end of the packet, or for cmdumppktsiz bytes.
If this item is not defined for the dump packet, the dump data starts 18 bytes
past the offset of the cmdumpstadd item.

Table dump packets also may contain these unsigned integer mnemonics, which are
copied to the dump file header and used for no other purpose. They need be correct only
in the first dump packet.

CTABLEID
A table ID for the table being dumped.

CTMEMSOURCE
A memory source ID for the table being dumped. This generally is used to
distinguish among copies of a table in ROM, RAM, and other storage (usually
other flavors of ROM or RAM).

10.2 Image Dump Report Format

The image dump packets are written to a file or group of files (if multiple dump copies
were requested) in the format shown below. The first line of the file contains a description
of the type of file (i.e. an "image dump file"). The second line of the file contains the date
the file was created. The following lines beginning with the character # are comment lines.

$Date: 2006/07/13 15:36:34 $

Chapter 10: Image Dumps 20

For table dumps, there will be a comment line which identifies the table id and the memory
source. Both table and memory dumps contain a comment line which indicates the copy
number of the particular dump file and the starting address of the dump. The remaining
lines which are prefixed with the character X contain the dump data extracted from the
dump packets.

Image Dump File
Date Created: 009-21:20:44

6a
01
02
04
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

P D DA DA DA DA DD D D DD DD DD DD D D D DD D D D D D D D N H O HH

Table

Table

16
00
00
00
08
10
18
20
28
30
38
00
00
34
36
Oc
Oc
3c
3e
Oe
Oe
Oe
Oe
Oe
Oc
66

ID: 95 (5fh) Memory Source: 2
Dump (Copy 1) Start Address: Oh

35 9a 04 04 08 0a 00 Oc 00 00 01 00 00 00
00 00 04 04 08 0a 00 Oc 00 00 02 00 00 00
00 00 04 04 08 0a 00 Oc 00 00 04 00 00 00
00 00 04 04 08 0a 00 Oc 00 00 00 38 00 00
00 00 04 04 08 Oa 00 Oc 00 00 00 38 00 00
00 00 04 04 08 Oa 00 Oc 00 00 00 38 00 00
00 00 04 04 08 Oa 00 Oc 00 00 00 38 00 00
00 00 04 04 08 Oa 00 Oc 00 00 00 38 00 00
00 00 04 04 08 Oa 00 Oc 00 00 00 38 00 00
00 00 04 04 08 0a 00 Oc 00 00 00 38 00 00
00 00 04 04 08 01 00 ec 00 00 00 04 00 00
00 00 04 04 08 Ob 00 Oe 00 00 00 10 00 00
00 00 06 04 08 Ob

00 00 0f £f 00 00 07 c3 00 00 01 04 08 Ob
00 00 O0f £f 00 00 07 99 00 00 04 04 08 Ob
00 00 01 00 00 00 01 00 OO0 00 04 04 08 Ob
00 00 20 00 00 00 20 00 00 00 06 04 08 Ob
00 00 O0f £f 00 00 07 47 00 00 06 04 08 Ob
00 00 0f ££f 00 00 07 d7 00 00 01 04 08 Ob
00 00 7f e0 00 00 4c €0 00 00 01 04 08 Ob
00 00 7f e0 00 00 4f 20 00 00 01 04 08 Ob
00 00 7f e0 00 00 59 a0 00 00 01 04 08 Ob
00 00 7f e0 00 00 7d 60 00 00 06 04 08 Ob
00 00 7f e0 00 00 7e cO 00 00 04 04 08 Ob
00 00 00 80 00 00 00O 00 OO0 00 06 04 08 Ob
00 00 of £f 00 00

$Date: 2006/07/13 15:36:34 $

Chapter 11: Image Load/Dump Verification 21

11 Image Load/Dump Verification

Once an image loads has been uplinked to the spacecraft, the user may issue a spacecraft
dump command to dump the image just loaded. The dump image can be compared to the
load image using the VERIFY directive (see (undefined) [VERIFY], page (undefined)) to
assure that the image was loaded correctly. The VERIFY directive causes a report to be
generated which shows the results of a byte-byte comparison of the data in each file. Each
byte that does not match will be marked with an *. An example of a verification report is
shown below:

IMAGE COMPARISON REPORT

August 6, 1993

Load File Name: /home/tcw/loads/FMATSA001012.ATF (105 bytes)
Dump File Name: /home/tcw/dumps/CTBLDUMP218-20:04:40.DMP (105 bytes)

Number of Bytes Compared: 105
Number of Errors Found: 60

Addr 00 01 02 03 04 05 06 07 08 09 OA OB 0OC OD OE OF
0000 | 2E 49 F6 A1 18 06 CO 00 00 09 00 01 O1 OO OO OO0
|*00 *00 *00 *00 *00 *00 *00 00 00 *00 00 *00 *00 00 00 00
0020 | 00 00 00 00 18 2E 49 F6 A2 18 09 CO 00 00 09 00
| 00 00 *15 00 *00 *00 *00 *00 *00 *00 *00 *00 00 00 *00 00
0040 | 00O 00 00 00 00 00O 00O 00 00 14 2E 49 F6 A3 18 03
| 00 00 00 00 00 OO0 00 *15 00 *00 *00 *00 *00 *00 *00 *00
0060 | CO 00 00 09 00 05 05 00 00 00 00 00 OO0 00 1F 2E
[*00 00 00 *00 00 *00 *00 00 00 00 00 00 *15 00 *00 *00
0100 | 49 F6 A4 18 03 CO 00 OO0 09 00 OC 04 00 OO OO0 00
|00 *00 *00 *00 *00 *00 00 00 *00 00 *00 *00 00 00 00 00
0120 | 00 00 00 10 2E 49 F6 A5 18 05 CO 00 00 09 00 02
| 00 *15 00 *00 *00 *00 *00 *00 *00 *00 *00 00 00 *00 00 *00
0140 | 00 00 01 BC 41 00 00 00 E1
| 00 00 *00 *00 *00 00 *15 00 *00

11.1 Command Checksums

There are a number of checksum routines available in ITOS that can be applied to
commands. Most of the routines are CCSDS specific or specific to a mission’s command
format. Care must be taken not to specify a checksum routine that is inconsistent with the
command type for which it is to be applied.

There are three levels within the command building process for which checksums can be
applied:

$Date: 2006/07/13 15:36:34 $

Chapter 11: Image Load/Dump Verification 22

11.2 Individual Commands

The inner most level of a checksum is applied to a command packet on a per command
basis by specifying the name of the checksum within the ITOS database CMD definition
record for each command for which the checksum is to be applied. The checksum is applied
immediately after the command has been built as described by the database cmd record.
Additionally a command checksum field can be defined and it’s name can be passed as a
parameter to the checksum routine name. If no checksum field name parameter is specified,
the default name of LCLCHECKSUM is used. If the LCLCHECKSUM field does not exist to give
direction otherwise, the checksum value will be appended to the end of the packet. See the
CMD database record description for more detail.

11.3 All Command Packets

A single checksum can be applied to all command packets by setting the global mnemonic
GBL_CMD_CHKSM_PKT to the name of a valid packet level checksum routine. Additionally, a
checksum field called GBLCHECKSUM may be defined that the checksum routine can reference
for instruction on how to insert the calculated checksum value into the command packet.
The field must be specified as part of the special local header command. For example, to
define a one-byte checksum field beginning at byte offset 7 of every command:

FLD|GBL_LCLHDR |GBLCHECKSUM|+|UI||71018]||||ZERO|
"<HTML>
Global checksum field appearing in all commands"
SUB|ZERO|default|+|0|N|Initialize to zero

If no checksum field is specified, the calculated checksum will be appended to the end of
the packet (unless the checksum algorithm is documented otherwise).

The packet level checksum, if used, will be applied after any command-specific level
checksum has been applied and is valid for both CCSDS and RAW command types (see
CMD database record description). Again, the checksum routine specified must be consistent
with the command type.

11.4 All Command Frames

A single checksum can be applied to all commands at the CCSDS Transfer Frame level
by setting the global mnemonic GBL_CMD_CHKSM_TF to the name of a valid CCSDS Transfer
Frame level checksum routine. This level of checksum will be applied after any command-
specific and/or command packet level checksum have been applied.

$Date: 2006/07/13 15:36:34 $

Chapter 12: Command Simulator

12 Command Simulator

$Date: 2006/07/13 15:36:34 $

23

Table of Contents

The ITOS Command Subsystem 1
1 Command Overview0euuun.. 2
2 Enabling Commands....................... 3
3 Typesof Commands....................... 4
3.1 Command Mode Configuration Commands................ 4

3.2 Spacecraft Commands i 4

3.2.1 Command Mnemonics.oooueuu.... 6

322 Raw Commands..............ccuiiiieinnnennn.. 6

3.2.3 Hazardous Command Screening.................. 7

3.3 Control Commands.............oiiiiiii 7

3.3.1 FARM Control Commands 7

3.3.2 FOP Control Commands........................ 7

4 Spacecraft Command Verification........... 8
4.1 Automatic Command Retransmission 8

4.2 Setting Timeout Parameter 9

4.3 Single-Step Verification 9

5 Turning Off Verification................... 10
6 FOP States @ 0 0 0 0 0 0 0 0 0 0000000000000 0 11
7 Command Buﬁ‘er ® & 0 0 0 0 0 0 0 0 0 000000000000 0o 12
8 Sent Queue @ 0 0 0 0 0 0 0 0 0 0 0000000000000 0 13
9 Image LOadS ® 0 0 0 0 0 0 0 0 0 000 PPeee0eee 00000 14
9.1 Load Files...... ..o 14

9.2 Formatted Image Load Files 17

10 Image Dumpscccoviiiiiiinnnnnnn. 18
10.1 Image Dump Packet Format 18

10.2 Image Dump Report Format........................ ... 19

$Date: 2006/07/13 15:36:34 $

11 Image Load/Dump Verification........... 21
11.1 Command Checksums, 21
11.2 Individual Commandsco ... 22
11.3 All Command Packetscovurrnnn.. 22
11.4 All Command Frames, 22
12 Command Simulator..................... 23

$Date: 2006/07/13 15:36:34 $

ii

